
Table Files 36-1

Chapter 36: Table Files

This chapter describes table files. Table files contain product-specific,
installation-independent information. Most, but not all, products require a
table file. UPS product developers are responsible for providing the table files
associated with their products.

36.1 About Table Files

Table files are created and maintained by product developers. Table files
contain the non-system-specific and non-shell-specific information that UPS
uses for installing, initializing, and otherwise operating on product instances.
For a given product, usually a single table file suffices for several instances,
especially of a single version. Sometimes each instance has a separate table
file. Table file names are arbitrary; we present recommendations in section
36.3 Recommendations for Creating Table Files.

Typically, when a UPS command is issued, UPS finds the table location from
the command line or the version file (see section 29.4 Determination of ups
Directory and Table File Locations). The command completes its internal
processes, and then within the table file, it proceeds to:

1) locate the stanza that matches the specified product instance

2) find an ACTION keyword value that corresponds to the command, if
any (see Chapter 34: Actions and ACTION Keyword Values)

3) execute the functions listed underneath the corresponding ACTION
keyword, if any (see Chapter 35: Functions used in Actions), or

4) reverse the functions listed underneath the ACTION corresponding to
the “uncommand” (see section 34.2.2 “Uncommands” as Actions)

36-2 Table Files

36.2 When Do You Need to Provide a Table
File?

Not all products require a table file. In particular, if no processing besides the
internals and defaults needs to be done for any UPS command run on a
particular product, and if its ups directory and documentation reside in the
default areas, then the product doesn’t need a table file. However, for products
that do need a table file (most), at least a rudimentary table file must be in place
before any instance is declared to a target UPS database. If it’s not added right
away, users may see incorrect behavior before it is there.

36.3 Recommendations for Creating Table
Files

• Although table files can have any file name, we recommend that they be
named as <product>.table (e.g., emacs.table) or
<version>.table (e.g., v19_34b.table) for easy identification.
If a table file is unique to a particular version of the product (which is
likely because versions of product dependencies often change along with
the version of the main product) then the name should be
<product>_<version>.table (e.g.,
emacs_v19_34b.table).

• Table files should not source any setup.[c]sh script unless flow
control (if then else, looping, etc.) is needed. For assistance, contact
uas-group@fnal.gov.

• In most cases, “un” actions (e.g., UNSETUP, UNCURRENT) are not
needed (see section 34.2.2 “Uncommands” as Actions). If an “un” action
is not specified in the table file, UPS will undo what the corresponding
action did (e.g., SETUP, CURRENT), in reverse order, provided
reversible functions were used (see section 35.2 Reversible Functions).

• Individual groups or experiments at Fermilab may set standards regarding
table files that members should follow; contact your group leader to find
out if there are any you need to be aware of. For example, ODS prefers
that table files be maintained in the UPS database product subdirectory
(e.g., $PRODUCTS/emacs) rather than in the product’s ups directory.

Table Files 36-3

36.4 Table File Structure and Contents

36.4.1 Basic Structure

The file starts with a header that identifies the file type and the product:
File=Table

Product=<product>

The basic structure of table file contents consists of an instance identifier
followed by one or more actions (described in Chapter 34: Actions and
ACTION Keyword Values). By the time UPS accesses the table file, it has
already determined the database, product name and product version. Therefore
FLAVOR and QUALIFIERS together are sufficient to identify the instance.

36-4 Table Files

Here is a sample table file that illustrates the basic structure:
File=Table

Product=exmh

FLAVOR=SunOS+5

QUALIFIERS=""

 ACTION=SETUP

 setupRequired(expect)

 setupRequired(mh)

 ...

 ACTION=UNSETUP

 ...

User-defined keywords, described in section 28.2 Keywords: Information
Storage Format, can also be included after an instance identifier for use within
actions.

36.4.2 Grouping Information

When a single table file represents multiple instances, a grouping structure can
be superimposed on this basic structure to organize the information. To avoid
having to repeat identical actions for a series of FLAVOR/QUALIFIER
identifiers, the keyword FLAVOR can take the value ANY in table files.
FLAVOR=ANY is taken as a best match, assuming all other instance
identifiers match (see Chapter 27: Product Instance Matching in UPS/UPD
Commands for more information on instance selection).

Grouping information within table files is supported via the use of the
following three markers:

GROUP: Groups together multiple flavor/qualifier pairs. All
entries subsequent to GROUP: are part of this group
until an END: marker is found.

COMMON: Groups together actions that apply to all instances
represented in GROUP:. COMMON: is only valid
within a GROUP:.

END: Marks the end of a GROUP: or COMMON:. One END:
marker is used to jointly end a GROUP: and an included
COMMON:.

UPS does not require grouping in table files; these markers are available for
convenience and for organizing information clearly. However, if GROUP: or
COMMON: is used, END: must appear at the end of it, even if that is the very
end of the file.

Table Files 36-5

36.4.3 The Order of Elements

Blank lines are ignored, and therefore can be placed anywhere.

• The first keywords after GROUP: must always be FLAVOR followed by
QUALIFIERS (i.e., the instance identifiers).

• FLAVOR and QUALIFIERS cannot be included within a COMMON:
grouping.

• User-defined keywords can be defined anywhere except between
GROUP: and the instance identifiers.

• Actions (described in Chapter 34: Actions and ACTION Keyword Values)
for each instance are located after the instance-identifying keywords, and
often between a COMMON: and END:.

• All actions after COMMON: apply to all the FLAVOR-QUALIFIERS
pairs listed above it within the current GROUP:.

• All statements apply to the most recently defined FLAVOR/QUALIFIER
keywords except for the statements between COMMON: and END:
(which apply to all the flavors in the current GROUP:)

• GROUP:s cannot be nested.

36.5 Product Dependencies

36.5.1 Defining Dependencies

UPS product dependencies get listed in the SETUP action for the product
instance in question. The setupRequired and setupOptional
functions, described in section 35.3 Function Descriptions, can be used within
the SETUP action to setup the dependencies along with the main product.
These two functions take the same set of options and arguments as a normal
setup command (see section 23.1 setup) in order to clearly specify the
desired instance of the dependent product. We discourage specification of
particular versions of products, and recommend using chains instead, e.g.,:

ACTION=SETUP

 setupRequired("perl")

This example sets up the default instance of perl, chained to current. Using
chains, it is easier to keep the dependencies and the main product in sync.

Products that are not maintained in the UPS framework can also be designated
as dependencies. You would need to use the function exeAccess to locate
and access a non-UPS executable through your $PATH. For example, the
action:

36-6 Table Files

ACTION=SETUP

 setupOptional(gcc)

 exeAccess(gcc)

tells UPS to setup the current instance of gcc if there is one declared; the
exeAccess function checks for a version of gcc in your $PATH, even if it’s
not one that is managed by UPS, and exits with an error if one is not found.

36.5.2 Product Dependency Conflicts

When different dependencies include the same product via different
dependency trees (and therefore may require different instances of the same
product), rules have been established to determine which instance of the
dependent product is selected and in which order the required products are
setup.

Table Files 36-7

Selection Algorithm for Conflicting Dependencies

The rules are as follows:

1) First level product dependencies, defined as those products listed as
dependencies in the table file of the main product instance, take
precedence over lower level dependencies when selecting which
instance of the required product to set up.

2) Dependencies listed later in the table file take precedence over those
listed earlier.

Example of Dependency Selection and Order of Setup

We’ll take you through an example that illustrates how the dependencies are
selected and in what order they are setup. Our sample dependency structure
starts with the product A as the parent product. It has two dependencies, which
in turn have dependencies of their own. B b1 refers to product B, version
b1, and so on. (We recommend that developers avoid using specific version
dependencies in general; we use them in our example for illustrative purposes.)
Some of the dependencies are conflicting:

In A’s table file:
product A

setupRequired(B b1)

setupRequired(C c1)

In B b1’s table file:
product B b1

setupRequired(C c2)

setupRequired(D d1)

In C c2’s table file:
product C c2

setupRequired(D d3)

In C c1’s table file:
product C c1

setupRequired(D d2)

The tree is traversed starting at A, then going down each dependency branch.
So the order in which the products are encountered is:

1) A (no conflict)

2) A’s dependencies B b1 and C c1 are selected since they are the highest
level dependencies.

3) Start down B b1 branch: find C c2 (version c1 already selected by rule
1; C c2 ignored)

36-8 Table Files

4) Completing the B b1 branch, find D d1. It is examined, and ultimately
passed over (by rule 2) because D d2, a dependency of C c1 and
therefore also a second-level dependency of A, is encountered later.

36.6 Keywords that can be Used in Table Files

Keyword and
Default Value (if any)

Description and
Notes (if any)

ACTION defines an action (described in Chapter 34: Actions and
ACTION Keyword Values), i.e., groups together a list of
functions associated with a command (e.g.,
ACTION=SETUP)

CATMAN_SOURCE_DIR
Default: under the
${UPS_UPS_DIR}/
toman/catman directory

location of catman files (formatted man page files)
included with instance

COMMON: groups together actions that apply to all instances repre-
sented in “GROUP:”;
COMMON: is only valid within a GROUP:

DESCRIPTION product description

END: marks the end of a “GROUP:” or “COMMON:”; one
“END:” marker is used to jointly end a “GROUP:” and
an included “COMMON:”

FILE type of file (possible values: DBCONFIG, UPDCON-
FIG, CHAIN, VERSION, TABLE)

FLAVOR product instance flavor
Note: To easily accommodate flavor-neutral setup
functions in a table file, FLAVOR can take the value
ANY, but only in a table file.

GROUP: groups together multiple instances; all entries subse-
quent to this “GROUP:” are part of it until an “END:”
marker is reached

HTML_SOURCE_DIR
Default: under the
${UPS_UPS_DIR}/
tohtml directory

location of html files included with instance
not supported in UPS v4

Table Files 36-9

36.7 Table File Examples

36.7.1 Example Illustrating Use of FLAVOR=ANY

Below is a sample table file for the product exmh version v1_6_6 which uses
FLAVOR=ANY. For the exmh instances whose version files point to this table
file, all except those with qualifiers share the same stanza:

File=Table

Product=exmh

#***

Starting Group definition

INFO_SOURCE_DIR
Default: under the
${UPS_UPS_DIR}/
toInfo directory

location of Info files included with instance

MAN_SOURCE_DIR
Default: under the
${UPS_UPS_DIR}/
toman/man directory

location of unformatted man page files included with
instance

NEWS_SOURCE_DIR
Default: under the
${UPS_UPS_DIR}/
tonews directory

location of news files included with instance
not supported in UPS v4

PRODUCT product name

QUALIFIERS additional instance specification information often used
to indicate compilation options used by developer
Notes: appears immediately after a FLAVOR in these
files, and is coupled with it to complete the instance
identification (see 27.2.3 Qualifiers: Use in Instance
Matching)

UPS_DB_VERSION UPS database version

USER current username

VERSION product version

_UPD_OVERLAY main product name for overlaid product
Note: This keyword is user-defined from UPS’s point
of view. It is included here because it is configured and
used by UPD. Its use with overlaid products is
described in section 28.6.6 _UPD_OVERLAY.

Keyword and
Default Value (if any)

Description and
Notes (if any)

36-10 Table Files

Group:

Flavor=ANY

Qualifiers=""

Common:

 Action=setup

 setupRequired(expect)

 setupRequired(mh)

 setupOptional(glimpse)

 setupOptional(www)

 setupOptional(mimetools)

 setupOptional(ispell)

 setupOptional(popclient)

 prodDir()

 setupEnv()

 pathPrepend(PATH,${UPS_PROD_DIR}/bin)

 Action=configure

 execute(${UPS_PROD_DIR}/ups/configure,UPS_ENV)

End:

Actions, functions and variables as used in this example are described in
Chapter 34: Actions and ACTION Keyword Values, section 35.3 Function
Descriptions and section 35.6 Local Read-Only Variables Available to
Functions, respectively.

You’ll notice that there are no functions specified for unsetup in this table
file. Due to the defaults that UPS has in place, when unsetup is run all of
the setup functions will be reversed (the required products will get unsetup,
the defined environment variables will get undefined, and the product’s bin
directory will be dropped from $PATH. See sections 34.2.2 “Uncommands”
as Actions and 35.2 Reversible Functions.

36.7.2 Example Showing Grouping

Grouping is illustrated in the following example:
FILE=Table

PRODUCT=exmh

#***

Starting Group definition

GROUP:

FLAVOR=IRIX+5

QUALIFIERS=""

FLAVOR=IRIX+5

QUALIFIERS="mips2"

Table Files 36-11

COMMON:

 ACTION=SETUP

 setupOptional(expect)

 ...

 ACTION=CONFIGURE

 execute(${UPS_PROD_DIR}/ups/configure,UPS_ENV)

 ...

END:

#***

Starting Group definition

GROUP:

FLAVOR=ANY

QUALIFIERS=""

COMMON:

 ACTION=SETUP

 setupRequired(expect)

 ...

 ACTION=CONFIGURE

 execute(${UPS_PROD_DIR}/ups/configure,UPS_ENV)

 ...

END:

The second group (defined by FLAVOR=ANY) matches all the instances not
matched in the first group, except those with qualifiers.

36.7.3 Example with User-Defined Keywords

User-defined keywords are described in section 28.2 Keywords: Information
Storage Format. All user-defined keywords must have underscore (_) as the
initial character (e.g., _dest_arch). The following example illustrates their
use in a table file:

File=Table

Product=vxboot

#***

Starting Group definition

Group:

Flavor=NULL

Qualifiers="narrow29"

 _dest_arch=ppc

 _dest_env=VxWorks-5.3

 _dest_type=MVME2301

...

Common:

 Action=setup

 setupEnv()

36-12 Table Files

 envSet (VXB_DEST_ARCH,${_dest_arch})

 envSet (VXB_DEST_ENV,${_dest_env})

 envSet (VXB_DEST_TYPE,${_dest_type})

...

Table Files 36-13

36.7.4 Examples Illustrating ExeActionOpt Function

Example 1

In this example, there are actions for the first two instance identifiers, but not
for the third. We want to execute the XYZ action at setup time if it’s there, but
continue processing if it’s not. To do this, we must call the action using the
exeActionOpt function.

FILE=Table

PRODUCT=fred

#***

Starting Group definition

GROUP:

FLAVOR=SunOS+6

QUALIFIERS=""

 ACTION=XYZ

 fileTest(/, -w, "You must be root to run this
command.")

FLAVOR=IRIX+6

QUALIFIERS=""

 ACTION=XYZ

 fileTest(/, -w, "You must be root to run this
command.")

FLAVOR=IRIX+6

QUALIFIERS="mips2"

No XYZ action

COMMON:

 ACTION=SETUP

 exeActionOpt(XYZ)

 END:

...

Example 2

In this example, we use the exeActionOpt function to instruct UPS to
execute one action or another, depending on whether the user supplies an
option on the setup command line.

FILE=Table

PRODUCT=fred

#***

Starting Group definition

GROUP:

36-14 Table Files

FLAVOR=ANY

QUALIFIERS=""

 ACTION=SETUP

 exeActionOpt(XYZ_${UPS_OPTIONS})

 ACTION=XYZ_

 function_1()

 ACTION=XYZ_FULL_LICENSE

 function_2()

...

Table Files 36-15

If you run:

% setup fred

you’ll execute ACTION XYZ_. To execute ACTION
XYZ_FULL_LICENSE, you need to run:

% setup fred -O FULL_LICENSE

36-16 Table Files

